

### **EPON-OLT-20**

OLT for IEEE 802.3ah-2004 PX-20+ 1.25Gbps Downstream and 1.25Gbps Upstream

#### **Features**

- · SFP Package with SC connector
- 1.25Gbps, 1310nm BM APD Receiver
- 1.25Gbps, 1490nm Transmitter
- Compliant With IEEE 802.3ah-2004
- Up to 20km distance at 9/125µm G.652 SMF
- Complies with RoHS directive (2002/95/EC)
- Operating case temperature: Standard: 0 to +70°C



### **Applications**

- EPON 20km OLT Side
- Access Networks
- Fiber to the Home, Curb, Office(FTTx)

#### **Description**

Optone's high performance EPON OLT transceiver module is designed for Passive Optical Network application, 1.25Gbps downstream and 1.25Gbps upstream. It is fully compliant with IEEE 802.3ah-2004.

The EPON OLT transceiver is packaged of small form factor pluggable with SC connector. The digital diagnostic monitoring function is fully compliant with SFP MSA.

The module consists of 1490nm DFB Laser, APD detector and WDM filter in a high-integrated optical sub-assembly. It transmits 1.25Gbps at 1490nm, and receives 1.25Gbps at 1310nm in burst mode.



## **Absolute Maximum Ratings**

| Parameter           | Symbol | Min. | Max. | Units | Notes          |
|---------------------|--------|------|------|-------|----------------|
| Storage Temperature | Tst    | -40  | +85  | °C    | -              |
| Operating Humidity  | RH     | 5    | 90   | %     | Non-condensing |
| Supply Voltage      | Vcc    | 0    | 4.0  | V     |                |

# **Recommended Operating Conditions**

| Parameter                  | Symbol              | Min  | Typical   | Max  | Unit |
|----------------------------|---------------------|------|-----------|------|------|
| Operating Case Temperature | Tc                  | 0    | -         | +70  | °C   |
| Power Supply Voltage       | Vcc                 | 3.13 | 3.3       | 3.47 | V    |
| Power Supply Current       | Icc                 | -    | -         | 300  | mA   |
| Date Rate                  | Upstream/Downstream |      | 1.25/1.25 |      | Gbps |

## **Electrical Characteristics**

| Parar                             | neter                     | Symbol | Min | Typical | Max  | Unit | Notes                      |
|-----------------------------------|---------------------------|--------|-----|---------|------|------|----------------------------|
|                                   | Transmitter               |        |     |         |      |      |                            |
|                                   | Compatible<br>fferential) | Vin    | 200 |         | 1600 | mVpp | AC coupled internally      |
| Power Sup                         | ply Current               | Icc_Tx |     |         | 200  | mA   |                            |
| Input Impedance<br>(Differential) |                           | Zin    | 90  | 100     | 110  | ohms | Rin > 100<br>kohms @<br>DC |
| Tx Disable                        |                           |        | 2   |         | Vcc  | V    |                            |
| Tx Enable                         |                           |        | 0   |         | 0.8  | V    |                            |
| Tx Fault_High                     |                           |        | 2.4 |         | Vcc  | V    |                            |
| Tx Fault_Normal                   |                           |        | 0   |         | 0.4  | V    |                            |
|                                   | Receiver                  |        |     |         |      |      |                            |
| LVPECL Outputs<br>(Differential)  |                           | Vout   | 400 |         | 1600 | mVpp | DC coupled outputs         |
| Power Supply Current              |                           | lcc_Rx |     |         | 150  | mA   |                            |
| Dv 1 00                           | High                      |        | 2   |         | Vcc  | V    |                            |
| Rx_LOS                            | Low                       |        | 0   |         | 0.8  | V    |                            |

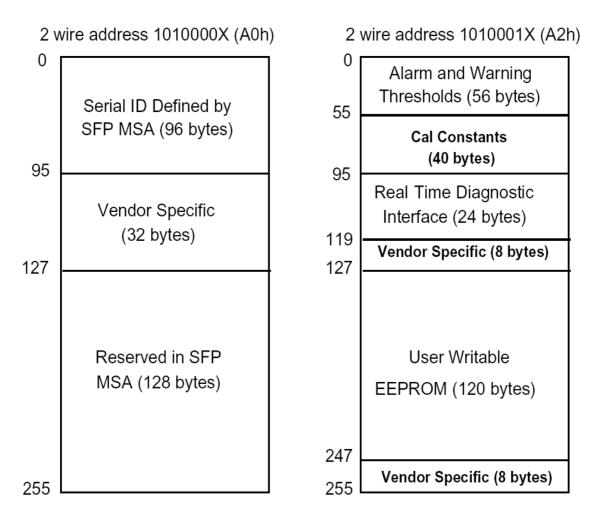


**Optical Characteristics** 

| Parameter                            | Symbol                 | Min      | Typical   | Max  | Unit     | Notes |
|--------------------------------------|------------------------|----------|-----------|------|----------|-------|
| Date Rate<br>(Upstream/Downstream)   |                        |          | 1.25/1.25 |      | Gbps     |       |
| 9µm Core Diameter SMF                |                        |          | 20        |      | km       |       |
|                                      |                        | Transmit | ter       |      | <u> </u> |       |
| Centre Wavelength                    | λс                     | 1480     | 1490      | 1500 | nm       |       |
| Spectral Width (-20dB)               | Δλ                     |          |           | 1    | nm       |       |
| Side Mode Suppression Ratio          | SMSRR                  | 30       |           |      | dB       |       |
| Average Output Power                 | P out                  | 2        |           | 7    | dBm      | 1     |
| Downstream optical penalty           |                        |          |           | 1    | dB       |       |
| Extinction Ratio                     | ER                     | 9        |           |      | dB       | 2     |
| Tolerance to Tx back reflection      |                        | -15      |           |      | dB       |       |
| Rise/Fall Time(20%~80%)              | tr/tf                  |          |           | 160  | ps       | 2,3   |
| Output Optical Eye                   | IEEE 802.3ah Compliant |          |           |      |          |       |
| Optical Output Power with TX OFF     | P_off -40 dBm          |          |           |      |          |       |
|                                      |                        | Receive  | er        |      | <u> </u> |       |
| Centre Wavelength                    | λс                     | 1260     | 1310      | 1360 | nm       |       |
| Receiver Sensitivity                 | Pmin                   |          |           | -30  | dBm      | 4     |
| Receiver Overload                    | Pmax                   | -6       |           |      | dBm      | 4     |
| Receiver Burst-Mode Dynamic<br>Range |                        | 15       | 20        |      | dB       | 5     |
| Receiver Reflectance                 | CR                     |          |           | -20  | dB       |       |
| LOSS Assert Level                    | LOSA                   | -44      |           |      | dBm      |       |
| LOSS De-Assert Level                 | LOSD                   |          |           | -32  | dBm      |       |
| Signal Detect Hysteresis             |                        | 0.5      |           | 6    | dB       |       |
| Receiver Settling Time               | Ts                     |          |           | 400  | ns       |       |
| Damage Threshold for Receiver        | Pin, damage            | 3        |           |      | dBm      |       |
| Maximum Receiver Reflectance         | Rx_r                   |          |           | -20  | dB       |       |

#### Notes:

- 1: Measured with 9/125um G.652 SMF.
- 2: Filtered, Measured with PRBS27 -1 test pattern @1.25Gbps.
- 3: Measured with the Bessel-Thompson filter OFF.
- 4: Measured with a PRBS  $2^7$  -1 test pattern @1.25Gbps, BER 1X10<sup>-12</sup>.
- $5\!\!:$  The input power difference between two subsequent high and low burst data.




#### **Digital Diagnostic Memory Map**

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.





## **Pin Diagram**

| 20 | VEET |
|----|------|
| 19 | TD-  |
| 18 | TD+  |
| 17 | VEET |
| 16 | VCCT |
| 15 | VCCR |
| 14 | VEER |
| 13 | RD+  |
| 12 | RD-  |
| 11 | VEER |

| 1  | VEET       |
|----|------------|
| 2  | TX FAULT   |
| 3  | TX DISABLE |
| 4  | MOD-DEF(2) |
| 5  | MOD-DER(1) |
| 6  | MOD-DEF(0) |
| 7  | RESET      |
| 8  | BSD        |
| 9  | RSSI TRIG  |
| 10 | VEER       |

Top of Board Bottom of Board

## **Pin Descriptions**

| Pin | Signal Name | Description                  | Plug Seq. | Notes  |
|-----|-------------|------------------------------|-----------|--------|
| 1   | $V_{EET}$   | Transmitter Ground           | 1         |        |
| 2   | TX FAULT    | Transmitter Fault Indication | 3         | Note 1 |
| 3   | TX DISABLE  | Transmitter Disable          | 3         | Note 2 |
| 4   | MOD_DEF(2)  | SDA Serial Data Signal       | 3         | Note 3 |
| 5   | MOD_DEF(1)  | SCL Serial Clock Signal      | 3         | Note 3 |

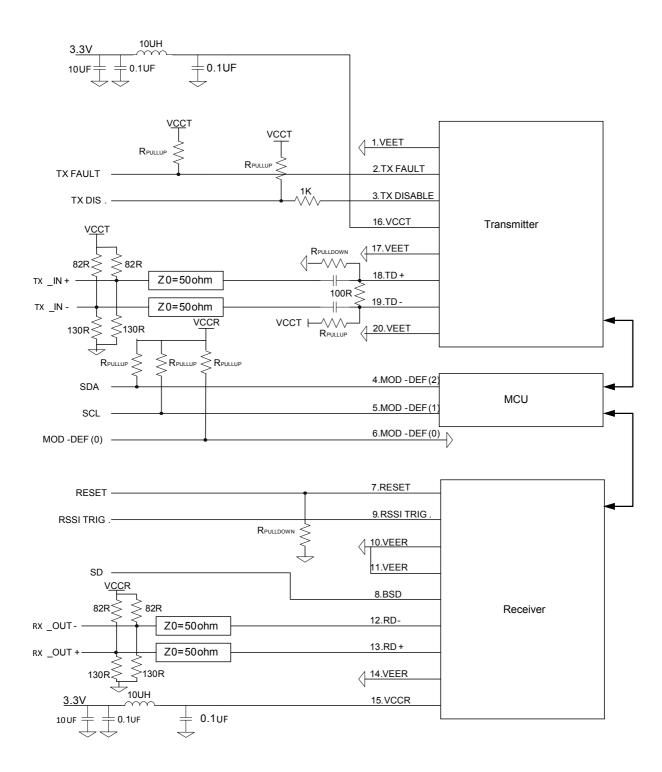


| 6  | MOD_DEF(0)       | TTL Low                                                                                            | 3 | Note 3 |
|----|------------------|----------------------------------------------------------------------------------------------------|---|--------|
| 7  | RESET            | LVTTL input. Assert "Reset" high at<br>the end of previous burst,16 bits in<br>duration            | 3 | Note 4 |
| 8  | BSD              | Burst signal detect                                                                                | 3 | Note 5 |
| 9  | RSSI TRIG.       | CMOS input. Assert high at the beginning of the monitored burst package,at least 300ns in duration | 3 | Note 6 |
| 10 | VEER             | Receiver ground                                                                                    | 1 |        |
| 11 | VEER             | Receiver ground                                                                                    | 1 |        |
| 12 | RD-              | Inv. Received Data Out                                                                             | 3 | Note 7 |
| 13 | RD+              | Received Data Out                                                                                  | 3 | Note 7 |
| 14 | V <sub>EER</sub> | Receiver ground                                                                                    | 1 |        |
| 15 | Vccr             | Receiver Power Supply                                                                              | 2 |        |
| 16 | Vccт             | Transmitter Power Supply                                                                           | 2 |        |
| 17 | V <sub>EET</sub> | Transmitter Ground                                                                                 | 1 |        |
| 18 | TD+              | Transmit Data In                                                                                   | 3 | Note 8 |
| 19 | TD-              | Inv. Transmit Data In                                                                              | 3 | Note 8 |
| 20 | VEET             | Transmitter Ground                                                                                 | 1 |        |

#### Notes:

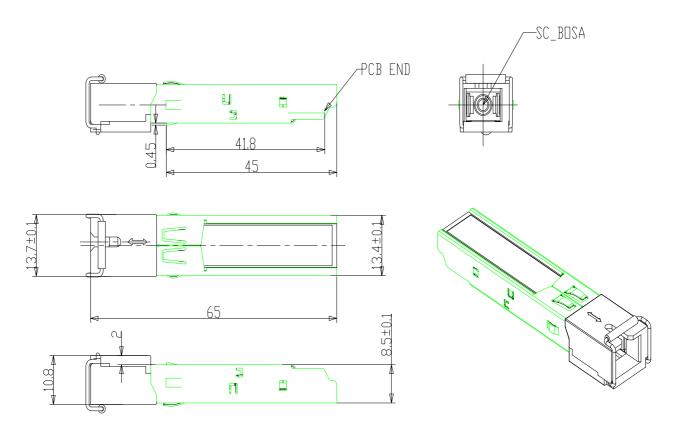
Plug Seq.: Pin engagement sequence during hot plugging.

- 1) TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a  $4.7k\sim10k\Omega$  resistor. Its states are:


Low (0 to 0.8V): Transmitter on (>0.8V, < 2.0V): Undefined

High (2.0 to 3.465V): Transmitter Disabled Open: Transmitter Disabled

- 3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7k~10kΩ resistor on the host board. The pull-up voltage shall be VccT or VccR.
  - Mod-Def 0 is grounded by the module to indicate that the module is present
  - Mod-Def 1 is the clock line of two wire serial interface for serial ID
  - Mod-Def 2 is the data line of two wire serial interface for serial ID
- 4) RESET is a LVTTL input. When the previous burst signal package is end, the host will give a "high" RESET to restore the state of LA. Internal pull-down 10K resistor to GND.
- 5) BSD can track the state of receiving burst signal. Logic 0 indicates loss of signal; Logic1 indicates receiving signal packages.
- 6) RSSI TRIG is a CMOS input. Assert high after 30ns delay time of the beginning of the monitored burst package, at least 300ns in duration.
- 7) RD-/+: These are the differential receiver outputs. They are internally DC-coupled 100 differential lines which should be terminated with  $100\Omega$  (differential) at the user SERDES.
- 8) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.




#### **Recommended Interface Circuit**





### **Mechanical Dimensions**





#### **Ordering information**

| Part Number | Product Description                                                 |
|-------------|---------------------------------------------------------------------|
| EPON-OLT-20 | Tx1490nm/Rx1310nm, 1.25Gbps/1.25Gbps, SC, 20km, 0°C~+70°C, With DDM |

#### **Important Notice**

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by OPTONE before they become applicable to any particular order or contract. In accordance with the OPTONE policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of OPTONE or others. Further details are available from any OPTONE sales representative.

sales@optone.net http://www.optone.net

Edition Feb 23, 2015 Published by Optone Technology Limited Copyright © OPTONE All Rights Reserved